планета Юпитер                                                  

Среднее расстояние от Солнца

778 330 000 км (5.2а.е.)

Экваториальный диаметр

142 984 км

Период вращения (на экваторе)

9.93 ч.

Период обращения

11.86 лет

Скорость движения по орбите

13 км/сек

Температура видимой поверхности

 -1330  C 

Масса (Земля=1)

317.9

Средняя плотность вещества (вода=1) 1,33
Сила тяжести на поверхности (Земля=1) 2,60
Кол-во спутников 16

 

 

 

 

 

 

 

 

 

Общие сведения

Юпитер - пятая по расстоянию от Солнца и самая большая планета Солнечной системы - отстоит от Солнца в 5,2 раза дальше, чем Земля, и затрачивает на одни оборот по орбите почти 12 лет. Экваториальный диаметр Юпитера 142 600 км (в 11 раз больше диаметра Земли). Период вращения Юпитера - самый короткий из всех планет - 9 ч. 50 мин. 30 с. на экваторе и 9 ч. 55 мин. 40 с. в средних широтах. Таким образом, Юпитер, подобно Солнцу, вращается не как твердое тело - скорость вращения неодинакова в разных широтах. Из-за быстрого вращения эта планета имеет сильное сжатие у полюсов. Масса Юпитера равна 318 массам Земли. Средняя плотность 1,33 г/см3, что близко к плотности Солнца. Ось вращения Юпитера почти перпендикулярна к плоскости его орбиты. Даже в небольшой телескоп видно полярное сжатие Юпитера и полосы на его поверхности, параллельные экватору планеты

Строение Юпитера

Видимая поверхность Юпитера представляет собой верхний уровень облаков, окружающих планету. Благодаря этому все детали на поверхности Юпитера постоянно меняют свой вид. Из устойчивых деталей известно Большое Красное пятно, наблюдающееся уже более 300 лет. Это - громадное овальное образование, размерами около 35000 км по долготе и 14000 по широте между Южной тропической и Южной умеренной полосами. Цвет его красноватый, но подвержен изменениям. Спектральные исследования Юпитера показали, что атмосфера его состоит из молекулярного водорода и его соединений: метана и аммиака. В небольших количествах присутствуют также этан, ацетилен, фосфен и водяной пар. Облака Юпитера состоят из кристалликов и капелек аммиака. В декабре 1973 г. с помощью американского космического аппарата "Пионер -10" удалось обнаружить наличие гелия в атмосфере Юпитера и измерить его содержание. Можно считать, что атмосфера Юпитера на 74% состоит из водорода и на 26% из гелия. На долю метана приходится не более 0,1% состава атмосферы планеты. Атмосферный слой имеет толщину около 1000 км. Ниже чисто газового слоя в атмосфере лежит слой облаков, которые мы и видим в телескоп.

В настоящее время построена двухслойная модель внутреннего строения планеты. Оболочка планеты состоит в основном из газовой компоненты (водород, гелий, неон), а ядро - из тяжелой компоненты (оксиды кремния, магния и железа, сульфиды, железо, никель и др.). Слой жидкого молекулярного водорода имеет толщину 24000 км. На этой глубине давление достигает 300 ГПа, а температура 11000 К, здесь водород переходит в жидкое металлическое состояние, т.е. становится подобным жидкому металлу. Слой жидкого металлического водорода имеет толщину около 42000 км. Внутри него располагается небольшое железно-силикатное твердое ядро радиусом 4000 км. На границе ядра температура достигает 30000 К. По массе ядро Юпитера составляет 3-4% от полной массы.

В 1956 г. было обнаружено радиоизлучение Юпитера на волне 3 см, соответствующее тепловому излучению с температурой 145 К. По измерениям в инфракрасном диапазоне температура самых наружных облаков Юпитера 130 К. Полеты американских космических аппаратов "Пионер-10" и "Пионер-11" позволили уточнить строение магнитосферы Юпитера, а изменение температуры облачного слоя в основном подтвердило известный из наземных наблюдений результат: количество тепла, которое Юпитер испускает, более чем вдвое превышает тепловую энергию, которую планета получает от Солнца. Возможно, что идущее из недр планеты тепло выделяется в процесс медленного сжатия гигантской планеты (1мм. в год). Магнитное поле планеты оказалось сложным и состоит как бы из двух полей: дипольного (как поле Земли), которое простирается до 1,5 млн. км от Юпитера, и не дипольного, занимающего остальную часть магнитосферы. Напряженность магнитного поля у поверхности в 20 раз больше, чем на Земле. Кроме теплового и дециметрового радиоизлучения Юпитер является источником радиовсплесков (резких усилений мощности излучения) на волнах длиной от 4 до 85 м, продолжительностью от долей секунды до нескольких минут или даже часов. Однако длительные возмущения - это не отдельные всплески, а серии всплесков - своеобразные шумовые бури и грозы. Согласно современным гипотезам, эти всплески объясняются плазменными колебаниями в ионосфере планеты.

Спутники Юпитера

Юпитер имеет 16 спутников. Первые 4 спутника открыты еще Галилеем - Ио, Европа, Ганимед, Каллисто. Они, а также внутренний, самый близкий спутник Амальтея движутся почти в плоскости экватора планеты. Ио и Европа почти сравнимы с Луной, а Ганимед и Каллисто даже больше Меркурия, хотя по массе значительно уступают ему. По сравнению с другими спутниками, галилеевские исследованы более детально. Внешние спутники обращаются вокруг планеты по сильно вытянутым орбитам с большими углами наклона к экватору. Это маленькие тела - от 10 до 120 км, по-видимому, неправильной формы. Самые внешние 4 спутника Юпитера обращаются вокруг планеты в обратном направлении. По данным, полученным с американских космических аппаратов "Вояджер", Юпитер окружен в экваториальной области системой колец. Кольцо расположено на расстоянии 50000 км. от поверхности планеты, его ширина около 1000 км. Существование кольца Юпитера было предсказано в 1960 г. астрономом С. К. Всехсвятским на основании наблюдений.

В 1976 г. космофизики М. Акунья и Н. Несс из Годдардовского центра космических полетов НАСА анализировали информацию, полученную от "Пионера-11", и заметили какие-то странные отклонения в межпланетном магнитном поле в окрестностях Юпитера.

Так как отклонения были зафиксированы, когда "Пионер-11" проходил всего в 43000 км над верхушками юпитерианских облаков, то есть совсем близко к планете, где "возмутителей магнитного спокойствия", казалось бы, не существовало, это требовало особого объяснения. Акунья и Несс предложили на выбор несколько и среди них такое: примерно в 59000 км от Юпитера проходит кольцо, которое и влияет на магнитное поле планеты.

"Вояджеру-1" удалось сделать первый в истории снимок кольца Юпитера, шесть раз экспонировав в течение 11 мин один и тот же кадр. В результате изображение тускло светящегося кольца было зафиксировано как широкая светлая полоса, наискось пересекающая центр снимка. В момент съемки внешний край кольца был в 1 млн. 212 тыс. км от "Вояджера". Позже были получены фотографии сделанные "Вояджером-2".

Внутренния спутники : Амальтея, Теба, Метида ( монтаж снимков зонда Галилео)Вокруг Юпитера обращаются 16 спутников, обращённых к нему, из-за действия приливных сил всегда одной стороной. Их можно разделить на две группы внутреннюю и внешнюю, включающие по 8 спутников каждая. Спутники внутренней группы обращаются почти по круговым орбитам, практически совпадающим с плоскостью экватора планеты. Четыре самых близких к планете спутника Адрастея, Метида, Амальтея и Теба диаметром от 40 до 270 км находятся в пределах 1-3 радиусов Юпитера и резко отличаются по размерам от следующих за ними 4 спутников, расположенных на расстоянии от 6 до 26 радиусов Юпитера и имеющих размеры, близкие к Луне. Они были открыты в самом начале семнадцатого века почти одновременно Симоном Марием и Галилеем, но принято их называть галилеевыми спутниками Юпитера, хотя первые таблицы движения этих спутников Ио, Европы, Ганимеда и Каллисто составил Марий.

Внешняя группа состоит из маленьких диаметром от 10 до 180 км спутников, движущихся по вытянутым и сильно наклоненным к экватору Юпитера орбитам, причем четыре более близких к Юпитеру спутника Леда, Гималия, Лиситея, Элара движутся по своим орбитам в ту же сторону, что и Юпитер, а четыре самых внешних спутника Ананке, Карме, Пасифе и Синопе движутся в обратном направлении.

Спутник

Расстояние от Юпитера

(тыс. км)

Радиус (км)

Масса (кг)

Дата
открытия

Кто открыл

Метида

128

20

9,5 .1016

1979

Синнот

Адрастея

129

10

1,91.1016

1979

Джевитт

Амальтея

181

98

7,17.1017

1892

Барнард

Теба

222

50

7,77.1017

1979

Синнот

Ио

422

1 815

8,94.1022

1610

Галилей

Европа

617

1 569

4,8.1022

1610

Галилей

Ганимед

1 070

2 631

1,48.1023

1610

Галилей

Каллисто

1 883

2 400

1,08.1023

1610

Галилей

Леда

11 094

8

5,68.1015

1974

Ковал

Гималия

11 480

93

9,56.1018

1904

Перрин

Лизистея

11 720

18

7,77.1016

1938

Никольсон

Илара

11 737

38

7,77.1017

1905

Перрин

Ананке

21 200

15

3,82.1016

1951

Никольсон

Карме

22 600

20

9,56.1016

1938

Никольсон

Пасифе

23 500

25

1,91.1017

1908

Миллот

Синопе

23 700

18

7,77.1016

1914

Никольсон

ИО - расстояние 500000 км ( Galileo) ИО

Ближайший к Юпитеру галилеев спутник. Его диаметр - 3630 км, а средняя плотность вещества 3,55 г/см3. Сернистый газ и пары серы выбрасываются со скоростью 1 км/с на высоту  до 300 км над поверхностью. Анализ  изображений показал, что каждую секунду действующие эруптивные центры выбрасывают около 100000 тонн вещества. Этого количества достаточно для того, чтобы покрыть всю поверхность Ио слоем в несколько десятков метров за несколько миллионов лет. По-видимому, этим объясняется полное отсутствие ударных кратеров на изученной поверхности спутника: погребение ударных структур под слоем вулканического материала идет с большей скоростью, чем их появление в результате падения метеоритов или комет. Большая часть цветных пятен по-видимому является недавними отложениями вулканов. Темные округлые образования также могут быть вулканами или вулканическими кальдерами.

Недра этого спутника разогреваются из-за приливных сил, вызванных Юпитером с одной стороны и Европой и Ганимедом с другой. Как и большинство спутников в Солнечной системе, Ио обращается вокруг Юпитера синхронно, т.е. период осевого вращения спутника равен периоду его обращения вокруг планеты. Ио находится на орбите близко расположенной к Юпитеру, в результате чего образуется приливной горб величиной в несколько километров. Небольшой эксцентриситет орбиты (0,004) приводит к явлениям, аналогичным либрациям Луны в процессе ее вращения вокруг Земли. Одновременно, под влиянием соседних Европы и Ганимеда возникают возмущения эксцентриситета орбиты, что вызывает периодические изменения амплитуды приливных деформаций в коре Ио. Снимки Ио, с разницей по времени в 17 лет (1979г. - слева и 1996г. - справа). В результате постоянной вулканической деятельности недр этого спутника Юпитера появились многочисленные изменения деталей поверхности.Такая постоянная пульсация предположительно тонкой коры (толщиной не более 20 - 30 км) обеспечивает энерговыделение, достаточное для расплава недр спутника, что и выражается в интенсивной вулканической активности. Оценки, сделанные на основе измерений теплового потока, исходящего из "горячих" областей Ио, показывают, что приливной механизм способен генерировать до 108 мегаватт энергии, что более, чем в 10 раз превышает суммарную величину энергии, потребляемой всем человечеством на Земле.

Хотя в районе экватора температура составляет 130° К, однако в горячих пятнах размером от 75 до 250 км температура достигает от 310 до 600° К. Возраст поверхности Ио, сложенной из продуктов извержений и имеющей оранжевый цвет, оценивается в 1 млн. лет. Рельеф Ио в основном равнинный, но имеется несколько гор высотой от 1 до 10 км. Атмосфера Ио сильно разрежена. Практически это вакуум, однако вдоль орбиты Ио обнаружено излучение кислорода, паров натрия и серы, поставляемых при извержении вулканов. В видимой части спектра установлено наличие трех компонент. Интенсивное излучение в синем участке связывают с процессами, которые сопровождают нередкие на Ио вулканические столбообразные выбросы. Вероятно, оно порождается возбуждением молекул SO2 электронами. Менее интенсивное излучение в красном участке объясняют присутствием в области над полюсом Ио атомарного кислорода. Дело в том, что именно эта область спутника оказывается приближенной к магнитоплазменному тору Юпитера — кольцеобразному облаку заряженных частиц (в основном ионов серы и кислорода), захваченных магнитным полем планеты. Плазма вращается вместе с этим полем и постоянно пополняется притоком молекул с Ио. Наименее интенсивное излучение в зеленом участке спектра исходит главным образом от ночной стороны Ио; оно, вероятно, порождается возбужденными атомами натрия. Отмечено также, что суммарное излучение от всего диска Ио убывает после начала затмения, в то время как локальное синее свечение, наоборот, становится более ярким.

Европа ( Cнимок Galileo P-48040)ЕВРОПА

Европа - второй из галилеевых спутников по размерам несколько меньше Луны, его диаметр 3138 км, а средняя плотность вещества - 3,01 г/см3. Поверхность спутника испещрена сетью светлых и темных линий, являющихся, по-видимому, трещинами в ледяной коре(толщиной предположительно 100 км.), образованными в результате тектонических процессов. Трещины, имеющие ширину от 20 до 200 км, простираются на тысячи километров. Перепады высот на поверхности в среднем не превышают 100 м. Подобное отсутствие выраженных форм рельефа (поверхность Европы выглядит как покрытый льдом водоем), по-видимому, служит указанием на существование под поверхностного глобального океана жидкой воды, разогреваемого энергией приливных взаимодействий, выделяемой в недрах Европы. Его предполагаемая глубина может достигать 50 км, что делает Европу единственным, исключая Землю, телом Солнечной системы, где вода в жидком состоянии встречается в таком огромном объеме. 

. Это предположение получило блестящее подтверждение во время экспедиции космического корабля "Галилей", который четырежды сближался с Европой в 1996 и 1997 годах. Оказалось, что гигантские льдины диаметром более 20 километров и толщиной до 10 километров действительно находятся в постоянном движении, крошатся или, наоборот, соединяются. Такие явления возможны только тогда, когда они плавают на поверхности теплого океана, дыхание которого постоянно прорывается сквозь грандиозный ледяной панцирь

Океан, подогреваемый бушующими в его недрах вулканами, не остаётся в долгу у космического холода и предпринимает всё новые и новые попытки вырваться из своего заточения. Более того, на одном из участков Европы он выходит на поверхность в виде двух незамерзающих отверстий, каждое диаметром больше 25 километров, разделенных несколькими находящимися в постоянном движении ледяными блоками. Ученые полагают, что в этом месте находятся два крупнейших подводных вулкана Европы.

 С вулканической деятельностью связывают и другие серьёзные дефекты ледового панциря - трещины, скважины, а также целые ледяные горы, которые возникают в результате замерзания миллионов тонн воды, прорывающейся под большим давлением сквозь ледяную корку в процессе извержений. Так, на фотографии, полученной во время последнего сближения "Галилея" с Европой 16 декабря 1997 года, зафиксирован конус настоящего вулкана, названного Пвилл, с кратером диаметром 26 километров. Этот вулкан считают достаточно молодым. Стены его кратера, по всей видимости, состоят из льда, хотя не исключается и наличие в них горных пород и застывшей лавы. Благодаря вулканам вода подлёдного океана Европы нагревается и в неограниченных количествах получает минеральные вещества. О том, что их содержание в океане действительно велико, свидетельствует наличие у Европы магнитного поля. Только большие концентрации заряженных веществ в воде (в первую очередь солей) могут поддерживать такое поле. По одной модели, для его создания достаточно одного движения соленой воды в океане, по другой - существенный вклад в формирование поля вносит колоссальное по мощности магнитное поле самого Юпитера, поляризующего океан Европы.

Под океаном, исходя из средней плотности, должны быть силикаты. Толщина коры по различным оценкам колеблется от единиц до десятков километров. Гравитационные измерения подтвердили дифференциацию тела Европы: металлическое ядро и водно-ледяной покров толщиной около 100 км. Расчеты теплового баланса в приповерхностных слоях планеты пока еще не дают окончательного ответа на вопрос об агрегатном состоянии воды. Значительную неопределенность вносит отсутствие точных данных о реологии льда и зависимости его теплопроводности от температуры. Однако очевидно, что теплоизолирующий ледяной покров мог бы обеспечить стабильность водного океана.

  Снимок поверхности Европы с зонда Галилео
На снимках высокого разрешения, полученных КА "Галилей" видны отдельные поля неправильной формы с вытянутыми параллельными хребтами и долинами, напоминающими шоссейные дороги. В ряде мест видны темные пятна, являющиеся, скорее всего отложениями вещества, принесенными из под ледяной поверхности. Поскольку кратеров на Европе, имеющей довольно гладкую поверхность, очень мало, возраст этой оранжево-коричневой поверхности оценивается в сотни тысяч и миллионы лет. 

Летом 1995 г. с помощью спектрографа высокого разрешения, установленного на Космическом телескопе им. Хаббла, в ультрафиолетовой части спектра Европы были обнаружены детали, свойственные молекулярному кислороду. На этом основании был сделан вывод о наличии у Европы кислородной атмосферы, простирающейся до высот около 200 км. Конечно, общая масса этой газовой оболочки ничтожна. По оценкам, давление атмосферы у поверхности Европы составляет всего лишь 10-11 от давления земной атмосферы. С большой вероятностью кислород на Европе имеет небиологическое происхождение. По-видимому, существует процесс испарения незначительного количества водяного льда, которым, как упоминалось выше, покрыта поверхность Европы. Вероятной причиной может быть, например, микрометеоритная бомбардировка с последующим разложением молекул водного пара и потерей более легкого водорода. При температуре поверхности Европы около 130 К тепловые скорости молекул кислорода не столь велики, чтобы привести к быстрой диссипации газа, а постоянная подпитка парами воды способствует сохранению постоянной, хотя и сильно разреженной, атмосферы юпитерианского спутника.

Ганимед ( "Вояджер 2" с расстояния 1230000 км.) Темная округлая область вверху, справа - Область Галилео поперечником 3200 кмГАНИМЕД

Самый крупный спутник , не только в системе Юпитера, но и во всей солнечной системе - Ганимед имеет больший размер чем Меркурий. Его диаметр 5262 км, однако средняя плотность лишь вдвое превосходит плотность воды, поэтому около 50% его массы должно приходиться на лед. Иней на Ганимеде ( Galileo) Множество кратеров, покрывающих участки темно-коричневого цвета, свидетельствуют об их древнем возрасте в 3-4 млрд. лет. Более молодые участки покрыты системами параллельных борозд, сформированных более светлым материалом под действием растяжения ледяной коры. Глубина этих борозд - несколько сотен метров, ширина - десятки километров, а протяженность может доходить до нескольких тысяч километров. У некоторых кратеров Ганимеда встречаются не только светлые лучевые системы, но иногда и темные

Поначалу считали, что жидкой воды на Ганимеде нет, но анализ последних фотографий показал: на спутнике возможны подземные водохранилища, расположенные на глубине нескольких километров от поверхности. На фотографиях видны гигантские ледяные кратеры, через которые и должны выбрасываться подземные воды. Вода, оказавшись на холодной поверхности спутника, замерзает в виде вулкано-образных ледяных конусов. Роберт Паппалардо, авторитетный исследователь Ганимеда, считает: в экваториальных областях спутника верхний слой пород выглядит, как пористая губка, сплошь покрытая шапками ледяных вулканов. В этих подземных водных бассейнах довольно тепло и вполне может быть жизнь. Во-первых, на Ганимеде, так же, как и на Европе, отмечена вулканическая активность; во-вторых, спутник согревается Юпитером; в-третьих, в центре Ганимеда расположено колоссальное по размерам раскаленное металлическое ядро (у Европы его нет). Следовательно, на Ганимеде может быть даже теплее, чем на Европе. Благодаря металлическому ядру у Ганимеда очень сильное магнитное поле, без которого, по мнению некоторых биофизиков, живое существовать не может. Магнитное поле создаёт Ганимеду изумительную по красоте ауру, образованную потоками заряженных частиц, устремленных от одного полюса к другому. Эту ауру открыли еще шестнадцать лет назад. Никакой другой спутник Солнечной системы аурой не располагает, она есть только у некоторых планет - Земли, Юпитера, Сатурна, Урана и Нептуна. Итак, на Ганимеде есть и вода, и вулканы, и магнитное поле. Напомним, что на нашей планете микроорганизмы обнаружены в таких неподходящих для жизни местах, как подземные глубины (до 3-4 километров), жерла подводных вулканов (где температура близка к точке кипения воды) и даже в тверди базальта и гранита. Не исключено, что сходные с ними по устойчивости и неприхотливости живые существа населяют и юпитерианские луны. 

Озон, обнаруженный на Ганимеде с помощью спектрографа высокого разрешения, установленного на Космическом телескопе им. Хаббла,  , скорее всего имеет аналогичное  происхождение кислороду Европы. Общая масса озона в предполагаемой кислородной атмосфере Ганимеда составляет не более 10% массы этого газа, ежегодно теряемой над южным полюсом Земли в области антарктической озонной дыры.

Каллисто  с расстояния 2,318,000 км. ( Вояджер 2)КАЛЛИСТО

Диаметр Каллисто 4800 км. В отличие от Ио, Европы и Ганимеда, он почти сплошь усеян кратерами, по-видимому, от ударов с небесными телами; собственного вулканизма или тектонической активности там, похоже, нет. Яркие пятна на темной поверхности - метеоритные кратеры, при образовании которых более светлый материал был выброшен на поверхность.  Кратеры на Каллисто имеют слабо выраженный вал и небольшую глубину. Температура поверхности на экваторе в полдень достигает 150° К. Возраст поверхности оценивается в 3,5 млрд. лет. На ней нет протяженных равнин или систем борозд

Исходя из  средней плотности Каллисто-1,839 г/см3 и спектрографических исследований предполагается, что водяной лед составляет 60% его массы. Толщина ледяной коры, как и у Ганимеда, оценивается в 75 км.Есть свидетельства присутствия на Каллисто и таких веществ, как CO, SO2, H2CO3. По всей видимости, у Каллисто есть атмосфера, хотя и очень разреженная. Она состоит из CO2, вероятно, поступающего в результате преобразования органики, приносимой метеоритами; давление такой атмосферы на поверхность — лишь 10–6 Па.

Кольцевая структура Асгард ( Зонд Галилео) Отличительной формой рельефа на Каллисто является многокольцевая структура диаметром 2600 км, состоящая из 10 концентрических колец. У спутника обнаружено собственное дипольное магнитное поле. Однако электропроводность льда, для его создания слишком мала, а гипотетическое металлическое ядро запрятано слишком глубоко. Должной проводимостью мог бы обладать внутренний океан глубиной 10 км, при условии, что его воды не менее солены, чем в земных океанах. Впрочем, если он действительно существует, придется изменить представление о вязкости льдов на Каллисто или же предположить, что в океане растворен некий антифриз. Лучшим кандидатом в последнем случае был бы аммиак, снижающий температуру замерзания воды примерно на 100 К.

В результате изучения галилеевых спутников высказана интересная гипотеза о том, что на ранних стадиях эволюции планеты-гиганты излучали в космос огромные потоки тепла, которое могло плавить льды на поверхности трех ближайших спутников. На Каллисто это не могло проявиться, поскольку он удален от Юпитера на 2 млн. км.

Юпитер в знаках Зодиака.

Юпитер в домах гороскопа.

Назад

 

Hosted by uCoz